Emerging Air Interfaces and Management Technologies for the 5G era
نویسندگان
چکیده
This Special Issue originates from the international conference EuCNC2016, which was held in June 2016 in Athens, Greece. Initially, it publishes some key contributions presented at the conference describing different aspects in the most recent 5G (5th generation) activities in the areas of Air Interfaces and Management Technologies. The series continues with further articles in the context of the same area. 5G mobile networks/wireless systems are the next step of mobile telecommunication standards, offering services and speed far beyond what 4G may offer. The most recent research activities focus on the development of 5G communications and networks, aiming to be fully available for the consumers through their devices by 2020. The scope of this Special Issue is to focus on aspects like 5G communications and networks technologies and more specifically Air Interfaces and Management Technologies. In the context of this Special Issue, numerous high-quality papers were received. After rigorous peer review, the following papers have been accepted and included in the Special Issue. Context-aware radio resource management below 6 GHz for enabling dynamic channel assignment in the 5G era, authored by Ioannis-Prodromos Belikaidis, Stavroula Vassaki, Andreas Georgakopoulos, Aristotelis Margaris, Federico Miatton, Uwe Herzog, Kostas Tsagkaris, Panagiotis Demestichas. Heterogeneous networks constitute a promising solution to the emerging challenges of 5G networks. According to the specific network architecture, a macro-cell base station (MBS) shares the same spectral resources with a number of small cell base stations (SBSs), resulting in increased cochannel interference (CCI). The efficient management of CCI that has been studied extensively in the literature and various dynamic channel assignment (DCA) schemes have been proposed. However, the majority of these schemes consider a uniform approach for the users without taking into account the different quality requirements of each application. In this work, we propose an algorithm for enabling dynamic channel assignment in the 5G era that receives information about the interference and QoS levels and dynamically assigns the best channel. This algorithm is compared to state-of-the-art channel assignment algorithm. Results show an increase of performance, e.g., in terms of throughput and air interface latency. Finally, potential challenges and way forward are also discussed. The 5G candidate waveform race: a comparison of complexity and performance, authored by Robin Gerzaguet, Nikolaos Bartzoudis, Leonardo Gomes Baltar, Vincent Berg, Jean-Baptiste Doré, Dimitri Kténas, Oriol Font-Bach, Xavier Mestre, Miquel Payaró, Michael Färber and Kilian Roth. 5G will have to cope with a high degree of heterogeneity in terms of services and requirements. Among these latter, the flexible and efficient use of non-contiguous unused spectrum for different network deployment scenarios is considered a key challenge for 5G systems. To maximize spectrum efficiency, the 5G air interface technology will also need to be flexible and capable of mapping various services to the best suitable combinations of frequency and radio resources. In this work, we propose a comparison of several 5G waveform candidates (OFDM, UFMC, FBMC, and GFDM) under a common framework. We assess spectral efficiency, power spectral density, peak-to-average power ratio, and robustness to asynchronous multi-user uplink transmission. Moreover, we evaluate and compare the complexity of the different waveforms. In addition to the complexity analysis, in this work, we also demonstrate * Correspondence: [email protected] University of Piraeus, Piraeus, Greece Full list of author information is available at the end of the article © The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. Demestichas et al. EURASIP Journal on Wireless Communications and Networking
منابع مشابه
Context-aware radio resource management below 6 GHz for enabling dynamic channel assignment in the 5G era
Heterogeneous networks constitute a promising solution to the emerging challenges of 5G networks. According to the specific network architecture, a macro-cell base station (MBS) shares the same spectral resources with a number of small cell base stations (SBSs), resulting in increased co-channel interference (CCI). The efficient management of CCI has been studied extensively in the literature a...
متن کاملTechnology pillars in the architecture of future 5G mobile networks: NFV, MEC and SDN
This paper analyzes current standardization situation of 5G and the role network softwarization plays in order to address the challenges the new generation of mobile networks must face. This paper surveys recent documentation from the main stakeholders to pick out the use cases, scenarios and emerging vertical sectors that will be enabled by 5G technologies, and to identify future high-level se...
متن کاملTowards a flexible harmonised 5G air interface with multi-service, multi-connectivity support
Current 4G air interfaces (AIs), by which we mean existing cellular standards and their evolution, including internetworking with other technologies such as WLAN, lack the flexibility required for support of multiple and diverse services envisaged for 5G, such as Massive Machine-Type Communications – mMTC, Ultra-reliable Machine-Type Communications – uMTC, and Extreme Mobile Broadband – xMBB, w...
متن کاملReview of Latest Advances in 3GPP Standardization: D2D Communication in 5G Systems and Its Energy Consumption Models
Device-to-device (D2D) communication is an essential part of the future fifth generation (5G) system that can be seen as a “network of networks,” consisting of multiple seamlessly-integrated radio access technologies (RATs). Public safety communications, autonomous driving, socially-aware networking, and infotainment services are example use cases of D2D technology. High data rate communication...
متن کاملHardware Accelerated SDR Platform for Adaptive Air Interfaces
The future 5G wireless infrastructure will support any-to-any connectivity between densely deployed smart objects that form the emerging paradigm known as the Internet of Everything (IoE). Compared to traditional wireless networks that enable communication between devices using a single technology, 5G networks will need to support seamless connectivity between heterogeneous wireless objects and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- EURASIP J. Wireless Comm. and Networking
دوره 2017 شماره
صفحات -
تاریخ انتشار 2017